

Cambridge International AS & A Level

FURTHER MATHEMATICS

9231/21 May/June 2024

Paper 2 Further Pure Mathematics MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PMT

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

PMT

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PMT

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2024

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$z^3 = 216\cos\frac{5\pi}{6} + i216\sin\frac{5\pi}{6}$	B1	Finds modulus and argument of $-108\sqrt{3} + 108i$
	$z_1 = 6\cos\frac{5\pi}{18} + i6\sin\frac{5\pi}{18}$	M1 A1FT	Finds one root. FT on their modulus. For M1 must have divided their argument of $-108\sqrt{3} + 108i$ by 3.
	$z_2 = 6\cos\frac{17\pi}{18} + i6\sin\frac{17\pi}{18}, z_3 = 6\cos\frac{29\pi}{18} + i6\sin\frac{29\pi}{18}$	M1 A1	Finds other two roots.
		5	

PMT

May/June 2024

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2024

PMT

Question	Answer	Marks	Guidance
2	$e^{1+x^2} = e(e^{x^2}) = e(1+x^2+)$	B1	Changes e^{1+x^2} or e^{1-x} so that the formula given in the list of formulae (MF19) can be applied.
	$e^{1-x} = e\left(1 - x + \frac{1}{2}x^2 +\right)$	B1	
	$e(1+x^2+)+e(1-x+\frac{1}{2}x^2+)$	M1	Sums power series.
	$e^{1+x^2} + e^{1-x} = 2e - ex + \frac{3}{2}ex^2 + \dots$	A1	
	Alternative method for question 2		
	$f'(x) = 2xe^{1+x^2} - e^{1-x}$	B1	Finds first derivative.
	$f''(x) = 4x^2 e^{1+x^2} + 2e^{1+x^2} + e^{1-x}$	B1	Finds second derivative.
	f(0) = 2e $f'(0) = -e$ $f''(0) = 3e$	M1	Evaluates their derivatives at zero.
	$e^{1+x^2} + e^{1-x} = 2e - ex + \frac{3}{2}ex^2 + \dots$	A1	
		4	

PMT

May/June 2024	May/J	une	2024	
---------------	-------	-----	------	--

Question	Answer	Marks	Guidance
3(a)	$\frac{dy}{dt} = \cos^{-1} t - \frac{t}{\sqrt{1 - t^2}}, \ \frac{dx}{dt} = \frac{1}{\sqrt{1 - t^2}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} = -t + \sqrt{1 - t^2} \cos^{-1} t$	M1 A1	Uses chain rule, AG.
		3	
3(b)	$\frac{d}{dt}\left(\frac{dy}{dx}\right) = -1 - \frac{\sqrt{1-t^2}}{\sqrt{1-t^2}} - \frac{t\cos^{-1}t}{\sqrt{1-t^2}} = -2 - \frac{t\cos^{-1}t}{\sqrt{1-t^2}}$	M1 A1	Applies product rule.
	$\frac{d^2 y}{dx^2} = -2\sqrt{1-t^2} - t\cos^{-1}t$	M1 A1	Uses chain rule.
		4	

Question	Answer	Marks	Guidance
4(a)	$I_n = \int_0^{\ln 3} \operatorname{sech}^{n-2} x \operatorname{sech}^2 x \mathrm{d}x$	B1	Separates into correct structure.
	$I_n = \int_0^{\ln 3} \operatorname{sech}^{n-2} x \operatorname{sech}^2 x dx = \left[\operatorname{sech}^{n-2} x \tanh x \right]_0^{\ln 3} + (n-2) \int_0^{\ln 3} \operatorname{sech}^{n-2} x \tanh^2 x dx$	*M1	Uses integration by parts correctly.
	$\left(\frac{3}{5}\right)^{n-2}\left(\frac{4}{5}\right) + (n-2)\left(I_{n-2} - I_n\right)$	DM1 A1	Uses $1 - \operatorname{sech}^2 x = \tanh^2 x$.
	$\left(1+n-2\right)I_n = \left(\frac{3}{5}\right)^{n-2}\left(\frac{4}{5}\right) + (n-2)I_{n-2} \Longrightarrow (n-1)I_n = \left(\frac{3}{5}\right)^{n-2}\left(\frac{4}{5}\right) + (n-2)I_{n-2}$	A1	AG
		5	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2024

Question	Answer	Marks	Guidance
4(b)	$I_2 = \frac{4}{5}$	B1	
	$3I_4 = \left(\frac{3}{5}\right)^2 \left(\frac{4}{5}\right) + 2I_2 \Longrightarrow I_4 = \frac{236}{375} = 0.629$	M1 A1	Applies reduction formula with $n = 4$.
		3	

Question	Answer	Marks	Guidance
5(a)	$\left[\int_{0}^{1} 2x - x^{2} dx < \right] \left(\frac{1}{n}\right) \left(2\left(\frac{1}{n}\right) - \left(\frac{1}{n}\right)^{2}\right) + \left(\frac{1}{n}\right) \left(2\left(\frac{2}{n}\right) - \left(\frac{2}{n}\right)^{2}\right) + \dots + \left(\frac{1}{n}\right) \left(2\left(\frac{n}{n}\right) - \left(\frac{n}{n}\right)^{2}\right)$	M1 A1	Forms the sum of the areas of the rectangles, may be in summation form. M1 is for correct number of rectangles.
	$=\frac{2}{n^2}\sum_{r=1}^n r - \frac{1}{n^3}\sum_{r=1}^n r^2 = \frac{1}{n^2}n(n+1) - \frac{1}{6n^3}n(n+1)(2n+1)$	M1 A1	Applies formulae from MF19. Summations must have (correct) limits for A1. Substituted in correctly once for M1.
	$=1+\frac{1}{n}-\frac{1}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)=\left(1+\frac{1}{n}\right)\left(\frac{2}{3}-\frac{1}{6n}\right)=\frac{2}{3}+\frac{1}{2n}-\frac{1}{6n^{2}}$	A1	AG. This A1 requires the previous A1.
		5	
5(b)	$\int_{0}^{1} 2x - x^{2} dx > \left(\frac{1}{n}\right) \left(2\left(\frac{1}{n}\right) - \left(\frac{1}{n}\right)^{2}\right) + \left(\frac{1}{n}\right) \left(2\left(\frac{2}{n}\right) - \left(\frac{2}{n}\right)^{2}\right) + \dots + \left(\frac{1}{n}\right) \left(2\left(\frac{n-1}{n}\right) - \left(\frac{n-1}{n}\right)^{2}\right)$	M1 A1	Forms the sum of the areas of appropriate rectangles. M1 is for seeing correct height of last rectangle.
	$\frac{2}{n^2} \sum_{r=1}^{n-1} r - \frac{1}{n^3} \sum_{r=1}^{n-1} r^2 = \frac{1}{n^2} (n-1)(n) - \frac{1}{6n^3} (n-1)(n)(2n-1)$	M1	Applies formulae from MF19, substitutes correct limit. Substituted in correctly once for M1.
	$\left(1 - \frac{1}{n}\right)\left(\frac{2}{3} + \frac{1}{6n}\right) = \frac{2}{3} - \frac{1}{2n} - \frac{1}{6n^2}$	A1	$(1+\frac{1}{n})(\frac{2}{3}-\frac{1}{6n})-\frac{1}{n}$ or fully expanded or fully factorised.
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(c)	$U_n - L_n = \left(1 + \frac{1}{n}\right) \left(\frac{2}{3} - \frac{1}{6n}\right) - \left(1 - \frac{1}{n}\right) \left(\frac{2}{3} + \frac{1}{6n}\right) (= \frac{1}{n})$	M1	Expresses their $U_n - L_n$ in terms of $\frac{1}{n}$. For, M1 they must taking the limit of an expression that tends to a constant. (Must be fully expanded if they do not take the limit at any stage.)
	$\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$ or $\frac{2}{3} - \frac{2}{3} = 0$	A1	AG, CWO. Their L_n must be correct.
		2	

Question	Answer	Marks	Guidance
6(a)	$\left(\cosh x + \sinh x\right)^{\frac{1}{2}} = \left(\frac{1}{2}\left(e^{x} + e^{-x}\right) + \frac{1}{2}\left(e^{x} - e^{-x}\right)\right)^{\frac{1}{2}}$	M1	Substitutes sinh and cosh in terms of exponentials.
	$\left(\mathbf{e}^{x}\right)^{\frac{1}{2}} = \mathbf{e}^{\frac{1}{2}x}$	A1	AG
		2	

May/June 2024

Question	Answer	Marks	Guidance
6(b)	$m^2 + m + 3 = 0 \Longrightarrow m = -\frac{1}{2} \pm \frac{1}{2}i\sqrt{11}$	M1	Auxiliary equation.
	$y = e^{-\frac{1}{2}x} \left(A \cos \frac{\sqrt{11}}{2} x + B \sin \frac{\sqrt{11}}{2} x \right)$	A1	Complimentary function. Allow ' $y =$ ' missing.
	$y = ke^{\frac{1}{2}x} \Longrightarrow y' = \frac{1}{2}ke^{\frac{1}{2}x} \Longrightarrow y'' = \frac{1}{4}ke^{\frac{1}{2}x}$	B1	Particular integral and its derivatives.
	$\frac{1}{4}ke^{\frac{1}{2}x} + \frac{1}{2}ke^{\frac{1}{2}x} + 3ke^{\frac{1}{2}x} = 5e^{\frac{1}{2}x} \Longrightarrow \frac{1}{4}k + \frac{1}{2}k + 3k = 5$	M1	Substitutes and equates coefficients. PI must be correct form (ae^{bx}).
	$k = \frac{4}{3}$	A1	
	$y = e^{-\frac{1}{2}x} \left(A \cos \frac{\sqrt{11}}{2} x + B \sin \frac{\sqrt{11}}{2} x \right) + \frac{4}{3} e^{\frac{1}{2}x}$	A1 FT	Must have ' $y =$ '. FT on their CF.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-\frac{1}{2}x} \left(-\frac{\sqrt{11}}{2} A \sin \frac{\sqrt{11}}{2} x + \frac{\sqrt{11}}{2} B \cos \frac{\sqrt{11}}{2} x \right) - \frac{1}{2} \mathrm{e}^{-\frac{1}{2}x} \left(A \cos \frac{\sqrt{11}}{2} x + B \sin \frac{\sqrt{11}}{2} x \right) + \frac{2}{3} \mathrm{e}^{\frac{1}{2}x}$	B1	
	$1 = A + \frac{4}{3} \frac{4}{3} = \frac{\sqrt{11}}{2} B - \frac{1}{2} A + \frac{2}{3} \implies A = -\frac{1}{3}, B = \frac{1}{\sqrt{11}}$	M1 A1	Substitutes initial conditions and forms simultaneous equations. For M1, CF must be correct form
	$y = e^{-\frac{1}{2}x} \left(-\frac{1}{3}\cos\frac{\sqrt{11}}{2}x + \frac{1}{\sqrt{11}}\sin\frac{\sqrt{11}}{2}x \right) + \frac{4}{3}e^{\frac{1}{2}x}$	A1	Must have ' $y =$ '.
		10	

PMT

May/June 2024	
---------------	--

Question	Answer	Marks	Guidance
7(a)	$\int \frac{x}{\sqrt{1+x^2}} \mathrm{d}x = \frac{1}{2} \int \frac{1}{\sqrt{u}} \mathrm{d}u = \sqrt{u} [+C] = \sqrt{1+x^2} [+C]$	M1 A1	Applies substitution.
		2	
7(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y}{x} = x \sinh^{-1} x$	B1	Divides through by <i>x</i> .
	$e^{-\int x^{-1} dx} = e^{-\ln x} = x^{-1}$	M1 A1	Finds integrating factor.
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{-1}y\right) = \sinh^{-1}x$	M1	Correct form on LHS. $\frac{d}{dx}(Iy)$ for their integrating factor <i>I</i> .
	$x^{-1}y = x\sinh^{-1}x - \int \frac{x}{\sqrt{1+x^2}} \mathrm{d}x$	M1 A1	Integrates RHS. RHS must be of the form $c \sinh^{-1} x$.
	$x^{-1}y = x\sinh^{-1}x - \sqrt{1 + x^2} + C$	A1	$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right)$
	$1 = \ln\left(1 + \sqrt{2}\right) - \sqrt{2} + C$	*M1	Substitutes initial conditions.
	$y = x^{2} \sinh^{-1} x - x\sqrt{1 + x^{2}} - x\ln(1 + \sqrt{2}) + x(1 + \sqrt{2})$	DM1 A1	Divides through by their integrating factor. Accept $y = x^2 \sinh^{-1} x - x\sqrt{1 + x^2} - x \sinh^{-1} 1 + x(1 + \sqrt{2}).$
		10	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

PMT

Question	Answer	Marks	Guidance
8(a)	$\begin{vmatrix} 6 & a & 0 \\ 2 & -1 & 0 \\ 1 & 5 & 4 \end{vmatrix} = -8a - 24$	M1	Finds determinant or solves equations.
	$a \neq -3$	A1	
		2	
8(b)	If $a \neq -3$ then system has unique solution (so consistent).	B1 FT	
	6x - 3y = 3, If $a = -3$ then $2x - y = 1, \Rightarrow 11x + 4z = 7$ x + 5y + 4z = 2,	M1	Eliminates variable using all 3 equations. Or states there are two distinct equations and three unknowns. Or gives accurate geometrical description with $a = -3$.
	So the system has infinitely many solutions (so consistent).	A1	
	Alternative method for question 8(b)		
	Sets $y = 0$.	B1	
	$\left(\frac{1}{2},0,\frac{3}{8}\right)$ is a solution so system is consistent for all values of <i>a</i> .	M1 A1	Finds a solution with $y = 0$ and states conclusion.
		3	

PMT

May/June 2024

9231/21

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(c)	Eigenvalues of A are 6, -1 and 4.	B1	Lower diagonal matrix or characteristic equation.
	$\lambda = 6: \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -7 & 0 \\ 1 & 5 & -2 \end{vmatrix} = \begin{pmatrix} 14 \\ 4 \\ 17 \end{pmatrix}$	M1 A1	Uses vector product (or equations) to find corresponding eigenvectors.
	$\lambda = -1: \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & 0 \\ 1 & 5 & 5 \end{vmatrix} = \begin{pmatrix} 0 \\ -10 \\ 10 \end{pmatrix} \sim \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$	A1	
	$\lambda = 4: \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -5 & 0 \\ 1 & 5 & 0 \end{vmatrix} = \begin{pmatrix} 0 \\ 0 \\ 15 \end{pmatrix} \sim \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	A1	
	Thus $\mathbf{P} = \begin{pmatrix} 14 & 0 & 0 \\ 4 & -1 & 0 \\ 17 & 1 & 1 \end{pmatrix}$ and $\mathbf{D} = \begin{pmatrix} 11664 & 0 & 0 \\ 0 & 100 & 0 \\ 0 & 0 & 6400 \end{pmatrix}$	M1 A1	Or correctly matched permutations of columns. Column of zeros in P gets M0.
		7	
8(d)	$(\lambda-6)(\lambda+1)(\lambda-4) = \lambda^3 - 9\lambda^2 + 14\lambda + 24 = 0$	B1	Characteristic equation.
	$14\mathbf{A} + 24\mathbf{I} = -\mathbf{A}^3 + 9\mathbf{A}^2$	M1	Substitutes for A and makes $14A + 24I$ the subject.
	$(14\mathbf{A} + 24\mathbf{I})^2 = (-\mathbf{A}^3 + 9\mathbf{A}^2)^2 = \mathbf{A}^4 (\mathbf{A} - 9\mathbf{I})^2$	M1 A1	Squares and factorises. CWO.
		4	